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ABSTRACT

The change of initial condition (CIC) problem in the theory of smoothing

in linear estimation is formulated in terms of a fixed rank perturbation to a

covariance kernel. The CIC or partitioning formulae are then shown to apply

for general nonstationary processes. It becomes clear that the formulae
involved derive from inversion formulae for fixed rank modification of a

positive definite kernel or matrix.
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SIGNIFICANCE AND EXPLANATION /' !

The estimation of one process from measurements on another related

} process is a problem that arises in many areas such as Time Series Analysis,
Econometrics, Communications Engineering and Control Engineering. Particularly
in the Engineering Applications there is a great interest in various computa-

. tional forms of the algorithms proposed to solve the above problem. One
important question concerns the effect of perturbations, in the initial condi-
tions of the process statistics, on the algorithms. This article discusses
sucn cffects for general process models and relates the results to the inver- '

sion of perturbed matrices or kernels. !
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The resyorsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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SMOOTHING ESTIMATION OF STOCHASTIC PROCESSES - PART I:
CHANGE OF INITIAL CONDITION FORMULAE

V. solo

Introduction. TRecently a great amount of attention has been focussed on variou:z
algorithms for solving the smoothing problem of linear estimation theorye see Ljung 3
and Kailath [111, Lainiotis {10], and references in these. The main algorithms
include the two-filter formulae, Mayne ([13), Fraser [3], Mehra [l14]); the innovations
formulae, Kailath and Frost [7]; and the partitioned algorithms, Govindaraj and
Lainiotis [4]. ;

This work is the first part of a twc part investigation of these aigorithms.
In Part I it is shown how change of initial condition (CIC) or partitioning formulae
hold in a very general setting (the CIC problem is shown to involve fixed rank

rerturbation in matrix inversion). 1In Part II the nature of the two-filter algorithms

is explored by providing a simple derivation Lhat shows to what extent the formulae
0ld generally ard so reveals exactly how a wide sense Markovian assumption in neces-
sary for their full utility.

The remainder of the paper is structured as follows. Section I contains a

discussion of CIC rormulae for discrete observations. Section II concerns CIC

formulae for continuous observations (actually the formulae are the same). Section III
discusges the relation with other work.
Before continuing recall the matrix inversion lemma (MIL). Let =, @, 7, D

be matrices related by

Zz =+ ipr!
then
27 e b e o Tt g eyt Tt (“ILa)
The following consequences are well known
R T N HESAN)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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I. Change of Initial Condition Formulae.

Consider the linear estimation of an n dimensional process x(t) from
measurements on a related ny dimensional process y(t). We deal firstly with dis-

crete measurements (at times tl < t2 < ... < tN = T 1in an observation interval

0 -t - T) which we collect into a vector Y. Suppose the process x(t) 1is composed

of 3 zero mean process §a(t) plus a transient component of the form ;(t,0): where

e, (henceforth denoted it) is a deterministic transition matrix (with
viz :(0,0) = 1) and g is a random vector uncorrelated with §a(t). It is sup-

rosed that the transient has induced a perturbation within the measured process y(t)

s0 that y(t) 1is of the form y(t) = (t) + g(t,o)é where Xa(t) is a zero mean

%
=a

trocess and  g(t,0) a deterministic function. Thus the measurement vector has the

U= 4+ Gr

The setting described here has been used by Aasnaes and Kailath [1] to study the
robustness of filtering algorithms to initial~condition perturbations.

Ia. A basic CIO rermula.

Consider now the linear estimation of x(t) from the measurements (/ under
varying assumi tions for the statistics of the 7 vector i.e. the initial conditions 1

for x(t). Under condition "o" let FO(F) be the distribution function of the vector

and suppose
L
() = E (0 -m - m =1
L) T my e BiC s m (G - m) o
whoere 0 denotes integration with respect to the distribution Fo(f). We have for
exany-le
B ({x = . m
Nx(E)) = rm
Acvcordinegly ow can cemute the linear least squares estimate
. e
. . -




:/ !l')-l(-l,‘ (1a)

- =

X, (0T = E x(r)) 4 Ealx ey vl

wheroe

I [_/ - 3;\(:_1) - '_/ S TS C o) (1c) 1

T iy latore, ted n o comrating o (L 7Y fromothe condiition "M calculation:
=L
without having to use the formula
. 1
A P It vyt o o Za
bl(n ™) ul(§(t)) " .l(fl(u)_l)‘l(;l_l) \ (Za ]

' X, (8) = x(t) - B (x(£)) = x (t) + : (i =n) (2b)

Fom e U = Se Zm = e =) (2c)

Boeoree from (1) and {(2b) that

(my, = o) ()

By - k() TT T

= Folx, (8

0 R IRt} o S,o= R (4)

S U R 1

anciooamilavle o, 00 Thas from (1a)

- -
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No subscrirt is given to this last expectation since the same result is cbtained under

nge oy 1M

Thus

similarly

Thus 51, §l’

Similarly

are perturbations of I

Moo= E(,_(a(c){_/;) + oS!

t=0

=S + 5.6

0" =0

S . When further observations are addcd

(6h)

(6¢)

S

remains a fixed rank perturbation of SO. This point is the essence of the ensuin

formulae.

Returning to (5a)

x) (EIT) - B (x(6)) =

sr, recalling (3) we find

<. (%
>_<1(.

Tt us wraite

we have
sty
151 =1
s7h s Gt )
2121 2 121 G Tl Qo
wisst - sThoiosThe - v sTiom, - m) by (68) and  (ILk)
=1'=C =1 0 0 1=1 1 =0 < s
- -1 -
RS - g Teove tu
%5 gO 55y 208, Y
v ool e PR | _ e
L‘0§0 L’( + =X §O {_r\ l’_m l§1 (E(‘_‘l mr‘) < (ec)
. -1 -1 -1
t'Ty - & L= L STGYISYS U~ w8 T a(mg - ) by (5a
X, (£,T) S R G L S Uy T B8 Sfmy ) by (Ba)
A EITY - B (R(E)) 4 (G = i STTO)CAtETN e ma s e fm o)
ot o'z e T YlaniEy e T 0 T o Ty T
' ~ -1 cm1
T) = ﬁm(t‘T) + (it - 5151 :) (-{_:|Em E.IA * ‘_‘1 - TQ) (e
;/!(D‘T) = 'S—l{" (7a)




S e [ SN ..A‘._‘
X to.at
) a1
0Ty = S TR I ¢ T S R N0 I
a0t (2 (1) - St e =y
=t -a =0’ Ea R S
- s1nec [CE I
e -1= Z3 -
T DT it D T
-1
" o no(roTy - o= 35 »)(r:] S, __3(‘, ) :
~1 -1 - E
o 0Ty (- _,:_11 ;)(ljl ST (x (°.7) - "G)) i

T, s Ty = T ix(E) - g (v )] ix' () ~ gi(x;T)]

(. T))xt (=)]

ion error is orthegonal to any lincar function of the
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. } ~-1 . -1
y ! = 1 =5, - MS
Heolm = e 0fmIT =1 - M8TG

Note that in formulae (8) the suffices 0,1 are dummy suffices and may be interchanged.

Since no relation has been specified between t and T, equations (8) are both

filtering and smoothing formulae. It is interesting that the data dependent portion of

the correction teym in (8) is the same for all t.

Now let us turn to find a CIC formula for gl(t,olT) or gl(t,o)T). Since

(o'T)

ll is of intermediate interest a CIC for this will be found too.

Ib. A CIC formula for gl<t,o}T);;l.

Consider then

S A 1
gl(t'O!T):l it ¥1§1 G
= -msTe - 2 oa'sTie by (6e)
it T =2 2T 22 2
-1
=3 -~ L5's.Tg) -
(L2858 HE)

. -1 -1 -1
= - G G) ~ M - AG" b a MIL4d
S0 - 258 - Esyietl - fgts ) by (64) and  (MILA)
. w oo Ll SRR
- (,'.t ‘_‘o§o \_’) (I 22 §1 C.;)

=1 TSt
= By(t,0lmi (T - 1G5's) 76

(9a)
let us call
= - c-s_lGA = (1 - :G's_lc)L (10a)
- - o2y 22 = L2z 2k
so that
p (t ﬁ‘m)ﬁ—l = t me)
Pl T2y = ;O( 0T
-1, .-1 . : =1
= D N = 4 "
;l(t,O T’);1 Lo ;l(t.OlT):; (9b)

“n the other hand, guided by (MiLe) we find via (64) that

-7~




(p (0T (00T) )

S0 -7

in another way by introducing

E_(x (D!

T - ) (x (0T = m)'
0%y, r:g)(:_(ﬁ( ) r_r?)

= P (e

Zo=0s0

W
-
>}

_ . - A
ST GV U U B

= e, - 0
SRR PRI BN G D ST,

R S
- - =L -G

-1 -1 o1 -

PR S

=+ 000 v (lac)

(175y, (17a) to find




Ilc.

CIC forrula for S (OIT).

Now

GLGs Yy - 0y (mp - m) by (MILb)

=0T = ets T 0l - ¢ -0
= (1 - 375t I = 0 my - m)
S 21 Z=en -1 7 =

(m, - go) by (17a)

. =1
e m oL TAn -
=Tl em - L0 @ - )

However by (1707)

al=o

1.

[t}

(1 +0 00, =0, @ "+ ¢

- 1 =0 =0 ==l

b (19f)

obsarve that

A T formula for

In Arprendix A Qt ls sl

(t,

and

(1od
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Licaczion 0 {(00) allows thils to be written

(1.1

(12¢)

(10q)

shown in

EpEETT) = Pl e ) e s (6,0 T 0T
N nete from oorthogonality
b= 0,0 = - Pi0,0,T)
= o= 0000 by (loe
T oabhn By (109
Thuao By (MILE)
-1 -1 ~1 =1
- =T + (0 -
~1 -1 (~l —l)
-1 1 -1 -1 )
Simiti? S = - Y - 1 P 4
imila Lq PR (EO -O) P, EO(U,O T)
RIGENSS§ S o= L=y, (10f) impylics by subtraction
-1 -1 - -
o1 S R
-1 <1 -0 -0
The £ull set »f change of initial condition formulae are
Equations (8a) , (8b) for §l(t1T)
tguations (9b) , (%)  for 2, (t,0|m)
Equations (l2a) , (12b) for P (t,t T)
Hyuation {loc) for
trauation (1o0) for Ql
i tihat ewvery guantity in these equations has a stochastic interpretation. This
s f.r a rapid compariszon with other work: see Section IJII. Also it isg
Sroob. Tl tnat these ecquations hnld alrqo far continuous time measurcement.

-1¢1=-
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If. Calculation of % (t,0/T) in continuous measurement State Space odels.

The quantity l(t,OIT) = E(t,OiT)z_l has only appeared in carlier work with
T=1t or t = 0. Here we derive a differential eguation for i(t,o:T). Begin with
the usual State Space Model

dx/dt = F()x(t) + I (t)w(t)

() = H(E)x(t) + v(E)

where w v are uncorrelated white noises with covariance matrix I. We use a formula
z,- H

of rauch et. al., [21}, (also Kailath and Frost [7, eguation (34a))

ax(t;Ty/dt = FOFET + 2O IO o) kit T) - kel

Thus
d: (t,0{T)/dt = d/dt E(x(t} - g(c:T))5'<0)g'1
. -1
= F(OEx(t) - X(t]T)x'(0)]
~ s er e e,0t) - v e,0lm)
Thus

di (t,0iT)/dt = (F() + Z(E)T (0171 (E))1(e,0'T)

- - -1 "
= () (8)P T (1)ilt,0t)
We need only augment this with an equation for ?(t,o[t) which is easily shown to be
the Kalman Filter transition matrix

d-(t,0lt)/at = (5(t) - g(t)g'(t)g(t))‘(t,oﬁt)

1]

I.

with initial condition ¢ (n,n[0)

I35. €17 formula for a Gaussian likelihood.

Congider the log Gaussian likelihood which is, to within a constant

In L, = In [glf - % gig;lgl (13a)

1
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e ——— . .

Now
)] = Is + cigl = Igglir e 5500 ld
cerale

= {5 il + rgsg gl

gl lalie™ - gy

SERTISTEN by (100) e
Next

-1 _ _ -1

ppsi ey = (g - Gy T B 'S

-1
1 (- - '
oSy ¢y 7 M T T4

bl

where 1 ll(O!T) ; see (7a).
sSo
-1 -1 -l -1
[T - s togrs Yy~ {my - m )t
15 4 :_’1(§o = GMG'S, )=O (m, ‘30) 1
by (MILD). continuing

~1 ~1
[ - \) - M - - L
I—.'l?.l !1 gl§0 go ll‘_\;\.o (Tl rl‘o) -1

-1 R
= i iy - - L = Ve = - LN

Now denote

= % (01T 5 Ky = XUl

3neh
P, = gl(o,o}T) P By = I_‘O(O,O]T)

and set €= 0 in (8a) to see

-1~




NP-l()A( -§<)=m -m + '
Z1-1 ;1 =0 £ e e )

aluo applying the inverse of (9b) with t = 0 glves

-1 -1 -1
e L
S 20-0
30
plx, - x)) T om0
kg B T X T o2 0 0 T =-c
-t - 5 by (11
=5 (my mme A—L) s b)
Thus
-1 -1 . N
' i = g i - -
gis T B T %5)
- o ' - i
+ (m1 rgo) (ml rgo)
fawever (12a) with ot = 0 implies
~1.,.-1 ;
U O O
LR N P2 RS, ;
Thu :
' ,|~—1 R ,|‘~-l - v - x ’ - it R 5
05 :1 B !gig vy (fl 50) (El EO) (51 fg)
+ (m, - m )“‘-l(m ~m)) (13¢c)
S R L S B

50 finally collecting (13a), (13b), (13c)

1n hl = 1n ot In :;j - In
] + 3 5 00T = %, (M) TE (0,007 P (0,0[T) Tz (0T - x (0 TH) |
'
L v ; !
—'5(131-:110) B (rgl—rgﬂ) (14) §

e

-

L —

. 13-




II. Continuous Time.

Let us retain the assumptions of Section I concerning the presence of the transicnt

term in both x and y and suppose now that y is measured continuously over the

interval ¢ < ¢t < T. 1Introduce similarly to before the kernels Mi' Si' g'gt, g’

Aefined on [0,T) < [0,T] by

Wi £,0) = Ei(§i(t)zi(c)) i=0,1 (15a)
s Y = B (s 1 = ¢
S {t, ) Ei(ii(t)li( ) i 0, 1 (15b)
Gog'(t,2) = gt igh(a) 5 gt (t,e) = g ig9' (o) (15¢)
where
x.(t) = x(t) - E, (x()) i=290,1
24 z i 2
¥y (e = yit) - B {y(t)) i=0,1
Then it follows as in Section Ia that
g = !
5y S0 + gig (154)
M= N + Mg
1 “O g (15¢e)
surpose too, without loss of generality that
is positive definite (15f)
rmall g(t) is an n - n matrix function. In the sequel h(t), f(t) will denote
2 v % - =

general n -vector functions.

The approrriate setting for the further development of CIC formulae in a general
fiztion is the theory of Reproducing Kernel Hilbert Spaces (RKHS): See Parzen [16]
and railat!. [(2]. The idea in the PKHS approach is to provide a coordinate free

ot resentation of continuous time equivalents of discrete forms such as "h's "f."

tow Parzen (161 only discusses KYHS's for scalar processes so it will be indicated

Lriefly how to define an appropriate RFHS for vector procenses,

-14-




Froposition 1. Existence and Uniqueness of a vector RKHS generated by an ny x n

Y

matrix covariance kernel (cf. Parzen [17, Theorem 3.1]). Let X(t)' t in [0,T)
have covariance kernel [ (t,c). Let H(I) consist of all ny-vector functiong
on [0,T} of the form

Dty = E(y(®)v)

for some scalar U in SL_(v(t), t in [0,T]) where SL2 is the (scalar) Hilbe

Space of random variables that are finite scalar linear combinations (of the form

n(e)

rt

figiz(ti)) of random variables Z(t)' t in [0,T] or limits in mean square of such

finite linear combinations. Define an inner product on H(7) as follows. If

hit) = E(y(t)U); £(t) = E(y(t)V) for U, V ¢ SL2, define

(h',£)_ = E(LV)

Then H(I) 4is a Hilbert Space satisfying
(a) ;i(-,t) ¢ H{D) i=1, .., ny
where ;i(-,t) is the ith column of T(s.t)

{b) (b',;i(-,t)>_ = hi(t) for all h - H(D)
Proof. Follows much as in the proof of Theorem 3.1 of Parzen [l17]. Observe for
example though that
i me= By )y, ()
where 7i(t) is the ith component of (t). Thus

AR A R E(Yi(t)V) = £,(t)

femark 1. Let F(t) be an n - m matrix function on the form ¥(t) = (gl(t) e fm(t))
:
whore fi(t) are n -vector functionsz. Also let G(t) be a similarly defined
m . n

N, - n matrix function. With a slight abuse of notation denote by (F,Gy  the

matrix wheooe i, e¢lement io ’f;,qi' . Thus

CHU, (et = ho(r)




-

, o ——y -

can be written

(h',Z(,£)) = h'(t)

Also
(Ei("t)’gj("s))z = Zij(t,s)
reads
(z(',t),g(-,s))Z = I(t,s)
Finally we denote
£. ¢ R(D) i=1, ..., m

by F ¢ H(ZI)

Remark 2. All the scalar RKHS theorems given by Parzen ({16] apply to vector RXHS's.

The basic question in applying RKHS theory consists in finding computational
expressions for the RKHS norm: for some concrete examples see Parzen [l6] and Kailath
et. al. [7]. To obtain results analagous to those of Section 1 we need a MIL for a
RKHS. First however it is convenient to define the direct product of two vector RKHS's
(cf. Parzen (l17]; also Kailath (6, p, 18}j}.

If 2, I are two m-dimensional positive definite kernels on [0,T} x [0,T)
generating RKHS's H(Z), H(I) respectively then the direct product H(Z) ® H(I) is
the space of m =~ m matrix functions on [0,T] x [0,T) which are linear combinations
of products of functions, one from H(Z), the other from H{(T) (cf the form

n(t,s) = Iifjgi(t):é(S)dij) on limits in the norm

' ‘2 e e ) )
halex) |, = *i“j(Ei'Ej>z(=i’9j)jdij

of such linear combinations (dij are real scalars).
Proposition 2. MIL for PKHS's. let 2, © be m x m matrix kernels on [0,T] - [0,T)

related by

2(t,s) = [ (t,s) + (£IDI'(s)

“16-
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, o —— >

where [(t) is an m - d matrix function and . a d - 4 positive

Let H(2), H{ ., be the MKHES's generated by 2, respectively then
({ie. i H(.), 1t = ', ..., 4 where ;:(t) Leothe  ith column of
(@) f . H(Z) 1iff f . H())
This does not mean H(Z) 1is a subsjpace of H({. )} or vi7e ver:za
entail equality of inner product-,

(k) For b, 2 - H(2ZY the H{Z) inter jroduct s

ChY, £ = int,f 0 - oo, e
where \ = D_l + (T,
Remark l. Formula (b) was suggested by (MIla).
Remark 2. Note that v is well defined {1£f @ . H() i.e. <.,

Proof. To see (a) we use a thecrem of Aronsz- - ‘U,

lefinite matrix.

FEE 8N ()
Tin)r)  we rave
sinse that weulld

i€
(i) There are constants Che €. such that czg - . and ch -z
semidefinite.,
In fact (i) is truec with CZ = 1 and
c. = Dtr(«;‘,;\f
where n = largest eigenvalue of D, Thir claim is proven in Aijendix B,

Now in view of {(a), (b) is rstablished if it i.: shown that
(i1) g(-,c) H(;) for all t in [0,T)

(1ii) for all vectors h H{)

h',20e,t)_ = h'(t
(h'LZet) = b ()

tdow (ii) is clearly true since _(-,t) - H(), [ HE) and Z(.,t)

ROLIIP

To see {i1ii) let h H{ )

and compute

= ;(.,

354] which imjlies that

t) +

(a)

Z are ;ositive

rlds




- e -y

otz

Sincw, by definition of
The result 1s thus prove

Remark 3. Since 7 H(

it fellows that D!

(iv) 2 - 2« H(D)

llow however according to
(iv) are necessary and s
ro be nonsingular. It i
remark 4. In a similar

(viz: MIL(E) - MNIL(f))

liow these results ¢
FPropeosition 3. let Hi

csitive definite.

() ~The HI inner

= (h',Z,e) ) =R, VT2,

=(h', D, t)) = (B, I()DI ()

(es€) 1. = (D', DY v I, TEI N (E))

= El(t) + (!:"T’\-[E _ ‘..'ln-l - \‘Y-l(;"Z)--]E:'(t)

= h'(r)

A4

n.
7)) and

Lozt = oS

Zio1 "j=ldij:"'i (t)iJ (<)

H(Z) @ H(Z) 1i.e. (iv) holds

8 H(D)

a result of Codaira [15] (sce also Kailath [6, p. 20]) (i),
ufficient for the problem of "detection" between 2 and [
s apparent that [ - H(I) ensures this nonsingularity.

way other !MIL expressions analogous to those of Section 1

can be obtained (iff T - H(I)).

an be applied to the present problem.

be the FXHS's generated by §i(t,;), i =0, 1. Suppose that

Then iff g - HO we have

rroduct i given by

1
32"5’1 =(h', £y - <h',g>O; (g'. D)

-18-
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Proof. Since . is assumed positive definite the result follows from Proposition 2.
Aemark. For future use we state the result corresponding to (MILb). Under the condi-
tions of Proposition 3

-¢b',gy,0¢g", ) (17b)

Finally we turn to consider the linear estimation problem. The RKHS framework

allows a general solutior to this problem: namely (Parzen (20])

gi(tjr) = E (x(6)) + gi(t}T) i=o0,1

where Ei(t T) is the unigue solution to the eguation

T TIVI()) = ouo(e,0) = E (x, (t)Y!()) fer all - in [0,T] i=0, 1 (l8a)

1 =1 ! -1 -1 1 -1 -1
where Ii(?) =y - g(:)gi i=90,1
That 1is, Uji(t ™ (the It element of Ei(th) is the unique member of Slél)
that satisfies (l8a). e can write g-mbolizally
I R N LT I A i=o0,1 (18b)

The eguality is s.mbolic because Zi rs Hi (Indeed (Xi,zi)i has infinite variance--
this is clear since the variance in the discrete case is Nny). In any case we are
now roady to estaklish the CIC formulae analogous to those of Section I. To see the
tvre of argumint needed the following result is established (cf. the main result
(6e), (7a) of Section Ia}.

ifroposition 4. for the zituation referred to at the beginning of this Section and

under the conditions of Proposition 3 (in particular that g - HO) we have

T = Rt S(E) = (L (E, . 5 (o] -
X (E/T) = R (E]T) + (2(E) = (3 (8,0),9))) (22 (0T) + my = mo)

where io(G:T) M- A PN

-10=-
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Proof. To simplify the argument and help reveal the basic idea we take o= om = "

so that §l(t) = §0(t) = x(t) and El(t) = zo(t) = y{(t) and §i(th) = Ei(t )

i =0, 1. let us denote
€, (e[ = G (e[ v (508) - (g0,
whore Vo = 000 - gt
We have then to show
G eim = r e -y
since EI(C{T) is unique this will follow if we establish

By (E[TIy' () = ¥, (t,0) for all 5 sn  [0,T)

Suppose it is shown that

(1) Ep (U (eiTh g’ (2)) = (MLE, =), 8) (+03))
(1) E (Vy' (o)) = (g'y8, (+h3)),
Then we can find
El(gl(t}T)y‘(d)) = (§O(t,'),§l(',C))o + (o(t) = (ﬂl(t,-),g)l)é(g'.§l(',:‘)>O
= <!~_10(t,-),§l(-,o)>o * <g§g',§l(-.c)>o -0 (t,°),g)1é(g',§l(~,c)>o
= (@l(t,'),§l(-,o)>o - <§l(t,°).g)]é<g',§1(-,c))o by (15e)
= (gl(t,'),§l(‘,s))l by (17b)
= gl(t,c) by the reproducing property
Thus we have to preove (i), (ii).

Let Pl, Po be the probability measures induced on the space of sample functions

of the normal rrocess y(t) under conditions "1", "O" respectively. Now according
to Femark 3 following Proposition 2 the assumption g - HO ensures the problem of

detectich between "1" and "0" is nonsingular seo that the Radon-Nikod:m derivative

-20-




(1.c. likelilwood ratio) dPl/dPO exists (cf. Parzei [19]). It follows then that

~ N Ty ro = ' . Y (g
By (L, (€T3 (7)) = B (g (&, Ty’ ()dp, /dp )

Cn the other hand

Egllo(eiTIy () = H o (t,)

by the definition of CO(t‘T): However

Eq(y(8)y' (1)dP /AP ) = By (y(B)y' ()
=5, (t,2)

Ylow if we can show that

g(s)ap sap - sL) (19)
i we will have the correspondences between ng and HO
':'O(tf':) - t;:o(t,-)
, g'(’)i?l/dr: . §1(',1)
Then it will be possible to aprly the definition of <-,'>C to see
EO(EQ(t T)z'(i)dplxdpo) = *:O(t,'),§l(',c)'b
: wiich is (1). €imilarly (ii) can be established.
Te see (19) obscrve
; El(;('\z'(')) = 3, (,0) HL
N 3¢ accerding to {a) of Fro:;osition (3)
L EA(;(');'(‘)dTl/dF¢) = 51(-, ) o

Thus by the definition of . (19) follows. The proof is complete.

“ote now that by a;pliing the basic :XHS approximation theorem (Farzen [10):

. — -

alsn farzen (17, Theorem 605 Kailath 5, t . 2411) to the discrete likelibeed

ratio




expression (14) of Section If we obtain the Radon-Nikodym derivative

i
-1 ,1 i
dr, /4P = AT exp i5 Ul :
i
where
1 A N \ -1 =~ N
Vo= 3 (% €0]T) = X (0]T (R (0,0[T) - P 0,0]T) T (x, (0]T) - x_(0[T))
1 , .-l ~
) (Tl - TO) 4 (my Tn)
i ;
_23_
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Itz Relation with other work.

Now we demonstrate how these

Fartitioned Algorithm (GPA)

(se2 Govindaraj and Lainiotis,

general results inrlude lainiotis'

[4]) as well

Liung and ¥ailath (111.
Consider the state space models
’ - -
x{t) = T{)x{t) + " (t)w(t)
vi{t) = H{=Ix (L) + vir)
or X X+ DLW
=x+1 “k=k =k~
v, T OH x4+
“k ~k=k ~k
where in ocach case W, Vo are uncorrelated white noises.
! 1= of the form
X = X_ + 17
2 2a iz
=yt glo= (lx_ +v) + H
= =3 E- (....a ~) -2
where N . are zero-mean rrocesses and = x({C). Also in each case
transition T, Thus the CIC formula derived abov
arylicable to these state space models,
IIZa. lation &<
rartitisning wview of the JIC problem bedgins with condition  "gU
i
: imagine s conditien "IY al adding a further transient to th

Gereralized

as work of

: is the
e are

and
e signal and

also recall
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P, (t,£|T) = Eo(t,tl'r) + io(t,o['r)gr(c[T)lo(c,o;'r) (2nb)

where we have introduced
1

X (0[T) = B (0jTI (A (O[T) + £ "m ) (2%¢)
rinally recall (loc) in the new notation
P'l(olT) =0+ 27t (206)
-r =0 =

Now recalling the stochastic interpretation of all the terms in equations (20) set

T = t to ser these equations can be compared with equations (41), (42), (43), (44)
of Govindaraj and Lainiotis [4] (in their notation take & = 0, k ¥ t; "n" = "o"

and other obvious equivalences). Also equations (9¢), (10f), (lla) can be compared tc

equations {55), (56), (57).

The case Eo = 0 1is discussed, for completeness, in Appendix C.

ITIb. Relation to work of Ljung and Kailath [12].

Equations (9b), (10f) can be compared to Ljung and Kailath [10, eguations 32, 33]

W(t) = 0 : to see this recall the stochastic interpretation

if we make the equivalence
of Q in (lud). (There thus appears to be a miswrite of equation (32)). Also
equation (8b) can be found in Ljung and Kailath [12]) in two cases: for T =t see

equation (14); for t = 0 see equation (26) and recall that

. -1
£.(0,0lT) = By 0,0IT) L
= - =0 .
I-50 by )
=24-
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Conclusion. In this article change of initial condition formulae havc been presented

for linear eo--1mates of general nonstationary processes perturbed by fixed rank
transients. The formulae apply to discrete or continuous measurement and to estima-
tion in continuocus or discrete time. Also a CIC formula for a Gaussian likelihood
has been given.

The derivations depend essentially on a simple Matrix Inversion Lemma.
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Appendix A, A CIC formula for gl(t,th).
First observe
5 My = F Y - 2 1 - s
PLCE,tiT) = By (x, (8{T) = E) (x(€))) {x) (6} T) = B} (x(t))]
-1 -1
= 5 (u ' n
55 Ghns Y
= N -111
M8y 8
The idea is to establish a relation with §O§;l§6. However let us calculate
. I = . - x ' - !
P e, EIT) = Ep (x(E) = x (e[ Ix(E) = (e(T)]
= £ (x(t) - gl(tgw)]5'<t> by orthogonality
. = - ¥ - o | - [
. El[§(t) El(§(t))][§ (t)) El[§l(t4T) “l(f(t))]f (t)
= I v ~ a1 - D 3 ity
Blx, ()X (8)] + g, 8! P (t,t]T) by orthogonality
Thus
P (e, E]T) = Bo(E,6]T) = g ag) = (B (6,£{T) = B (£, e]T))
Now if it 1s shown that
5 ! -~ p = =1, A\ -l
ByfE/tIT) = Pt T = 28T - MoSg 1
= e (s - te) A, - GUSTIMY) 4 e anl
¢ —1=1 =<2t - =0 =0 Ltoat
then the result (12a) will follow in view of (7¢).
Censider then
E \‘ . ,.-1.,| e -1 —1»-«*' =l ... . .
;l l‘ --lbl 1T (Sc - 51 [ERRS] SCI )Al b'} (MILb)
i = e T . L
S T HSg T F 8TS
; 1 1 1
o qr ' -\l_-v‘_-"- , o
f = { 0t e )so 4 Jlsl e SO 1 by (6C)
i ' , <Ll v amlqy . =l
; . = MBS (7 Sy GBSy




-

-

R e .

= u s

00 "0
= % _l\ll
= 1S,y

Now recall (9a)

wnhich, by (10b) is a

Thus the sum of the

-1
M S TGA! +
00 t

Thus

. "1
171

-1 . -1 -1 i
) Aol + (o, - b LU~ (b~ M SITG)ACS i
IOSO Gn.l\t ( £ 1050 G) £ ( € ! lsl ) t
~1
-1 4, A ] Fl
Sty e Mlsl G) Sy ]
-1 -1 -1
L oA - : - M G)lar o+ h -1 G} G' M
So My * vptie T G TS GME L = 8 G)AGTS Ty
-1 . -1 -1
=M g K PASY - (4, - M STG)A(:, - G '
050 Mo T TeNtE T Uiy T M S GNAE = GTS )

-1
+ MOSO cAcé +

-1

+ MOSO Gas! + (¢

[
t

lso

second and third

s -1 el 1oyl v -1 A¢
( M SO G)(z+»<G SO G) (.G SO G) ¢

t ¢]

-1 -1 -1 -
M A+ (8, - M G - + MG 3 L3
18 "G (»t Oso ) (I (I s0 Gy )

070 Tt

-1 -1
- M sTYGyAGT s !
+ A.lsl GYAG SO 11

-1 -1
- M AG? GA¢Y + (& = N
M Sl G) S0 S (xt 1

S U
£ 1 Sl G)Au'So Mo

1
-1 -1

b o= M el 3

(k,t JOSO G) (E a6 S‘1 G)

_1 _1 _1
S = M 3 + AG!
{ £ 1050 G) (I G So G)

terms above is
'
t

1 '
t

which is what was required to be established.
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Appendix B. Derivation of (16).

Let a; i=1, ..., N be any m-vectors and tl < t7 < L .. <t

points in  [0,T). The claim is that

= vN \"N l|" Wil ( X T Y‘) ~N <N |y
E it —l a;f (t )bl (t )a ~Dtr((_ = E)“l 175= 13 (t
Now
E= (f)_arT(e (L Tr(t.)a,)
1352038 5o 0 R0y
= u' '
u Q-iAD"_“ s
where u = TN I'(t))a
- “i=1% 'Uit-i

Next apply the reproducing property to see

N
B =D (gLt ay

- 1
' N
= (T (-).Zi=1(~,ti)§l>z
= (g'(-),V_va))z say

Now u has kth element u where

u = <Ik Yy v Y is the kth column of T
Thus
d 2 d
v = = i .
2T DU S Tea Apedip e :
= tr(;',[)z(!&,yN>
However

N N
= T . (e Y
Wyeeydr = (T jalile,t), T oot da,

N i=12 =1z c
- N N I
= LTy d) et st )y
N
LyerTim2lE(E ity

by the reproducing property., The result is thus established.
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Appendix C. ie¢lation with partitioned algorithm for Zn =0,

Consider .~w the casge that ;0 = C¢. Then by {(loa)
R = A =50
s telm = a - g
= Yo = Ty =
Dom LG = eoln =y
Thus, since Er = E, (9b) becomes
. | n = \ -
spft0imn, = roce,elmE, (c1)
while (94) reads
- t ! ~
i (t,0[T) = ig( 0T = (t,0,TIC By (c2)
Also (10c) becomes
-1 -1
Po=E 0 (C3)
when further my = 0, (7b) implies
x,(0[T) = 0
Thus for t = 0 (8a) becomes
< Ty = -7 \ I c
x (0[T) 21(;1 m o+ ;O(O.T)) (C4)

The pair (C3), (C4) with T = t, arc just a gencral version of Lainiotis' original
partitioned algorithm: Lainiotis [9], equations (3), (4). Equations (Cl), (C2) can

be compared with Lainiotis {[9] equations (20), (21).
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